Cross-regulation of Pseudomonas motility systems: the intimate relationship between flagella, pili and virulence.
نویسندگان
چکیده
Pseudomonas aeruginosa navigates using two distinct forms of motility, swimming and twitching. A polar flagellum and Type 4 pili power these movements, respectively, allowing P. aeruginosa to attach to and colonize surfaces. Single cell imaging and particle tracking algorithms have revealed a wide range of bacterial surface behaviors which are regulated by second messengers cyclic-di-GMP and cAMP; the production of these signals is, in turn, responsive to the engagement of motility organelles with a surface. Innate immune defense systems, long known to recognize structural components of flagella, appear to respond to motility itself. The association of motility with both upregulation of virulence and induction of host defense mechanisms underlies the complex contributions of flagella and pili to P. aeruginosa pathogenesis.
منابع مشابه
Organelles as virulence factors of an opportunistic pathogen Pseudomonas aeruginosa
Type IV pili (T4P) and flagellum are well known virulence factors of an opportunistic pathogen Pseudomonas aeruginosa. T4P pili provide twitching motility, adherence to biotic/abiotic surfaces, intercellular association that is essential to biophilm formation, and are implicated in chemotaxis, bacteriophage adsorption and DNA uptake. Flagellum provides swimming/swarming motilities and chemotaxi...
متن کاملInvolvement of Flagella-Driven Motility and Pili in Pseudomonas aeruginosa Colonization at the Air-Liquid Interface
Many aerobic microorganisms can colonize at the air-liquid interface and form a multicellular structure, known as a pellicle. In this study, the involvement of motility and attachment traits in the Pseudomonas aeruginosa pellicle formation process was investigated. Flagella- and flagellar-motor-deficient mutants exhibited delayed pellicle formation and unusual pellicle morphology, indicating th...
متن کاملPseudomonas aeruginosa exhibits sliding motility in the absence of type IV pili and flagella.
Pseudomonas aeruginosa exhibits swarming motility on 0.5 to 1% agar plates in the presence of specific carbon and nitrogen sources. We have found that PAO1 double mutants expressing neither flagella nor type IV pili (fliC pilA) display sliding motility under the same conditions. Sliding motility was inhibited when type IV pilus expression was restored; like swarming motility, it also decreased ...
متن کاملType IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system
Although flagella are the best-understood means of locomotion in bacteria [1], other bacterial motility mechanisms must exist as many diverse groups of bacteria move without the aid of flagella [2-4]. One unusual structure that may contribute to motility is the type IV pilus [5,6]. Genetic evidence indicates that type IV pili are required for social gliding motility (S-motility) in Myxococcus, ...
متن کاملPseudomonas aeruginosa twitching motility: type IV pili in action.
Type IV pili (T4P) are one of the most common forms of bacterial and archaeal surface structures, involved in adherence, motility, competence for DNA uptake, and pathogenesis. Pseudomonas aeruginosa has emerged as one of the key model systems for the investigation of T4P structure and function. Although its reputation as a serious nosocomial and opportunistic pathogen is well deserved, its faci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current opinion in microbiology
دوره 28 شماره
صفحات -
تاریخ انتشار 2015